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We present a study of the evolution of the transient periodic pattern in the nematic director
� eld reorientation in the magnetic non-Fréedericksz twist geometry. The stability of the
uniform director � eld reorientation with respect to periodic perturbations is studied as a
function of the magnetic � eld H, the angle a between H and the initial homogeneous nematic
director n0 (H not normal to n0 ) and the nematic viscoelastic parameters. The results predict
that for a < p/2, the amplitude of the periodic modes becomes damped after a critical time
and eventually fade away and consequently does not give way to periodic inversion walls as
in the Fréedericksz geometry (a 5 p/2). Also for a <p/2, it is predicted that the selected
periodic modes have progressively smaller wave vectors as the director reorients back to
equilibrium. The amplitude becomes damped earlier and the wave vector of the periodic
pattern decreases faster with time when the magnetic � eld acts away from the normal to the
initial director.

1. Introduction based on the linearization of the dynamic equations
around the uniform director reorientation, taken at theThe spontaneous formation and evolution of well-

organized structures such as periodic patterns in non- instant when a magnetic � eld H is applied at an angle
a with respect to the initially homogeneous director n0 ,equilibrium liquid crystals is a very active area of research

in the � eld of the physics of these materials (see surveys allowed us to explain the formation of spatial periodic
in [1, 2]). The results are interesting both from the tech- director structures in the non-equilibrium nematic sample.
nological and the scienti� c points of view. Experimental In this work we generalize the perturbation theory
and theoretical studies on transient patterns have been described in [23] and we linearize the dynamic equations
carried out mainly for nematic samples in Fréedericksz around the uniform reorientation taken at a time t > 0
geometries [3–13] and rotating magnetic � elds [14–18]. after the magnetic � eld is applied. This method allows
Studies on non-Fréedericksz geometries are less common us to study qualitatively the time evolution of the
[19–23]. In this work we attempt to obtain some insight periodic pattern for early times, before non-linear eŒects
into the evolution of the transient periodic pattern in the dominate as discussed in [7]. Our results predict that for
non-Fréedericksz twist geometry (for which the magnetic a < p/2, the periodic modes selected in each instant have
� eld is not normal to the initial nematic director � eld). successively smaller wave vectors as the reorientation
A sealed sample between two parallel plates with planar proceeds. Also for a < p/2, the initially increasing ampli-
boundary conditions and rigid anchoring and having a tude of the periodic modes is damped after a critical time
positive anisotropy of the magnetic susceptibility xa is and eventually vanishes. Consequently, it does not give
studied. way to inversion walls as in the a 5 p/2 case but instead

The possibility of forming periodic patterns in the a uniform reorientation regime eventually develops. The
non-Fréedericksz twist geometry has already been studied amplitude is damped earlier and the wave vector of
using linear stability analysis [23]. A perturbation theory the periodic pattern decreases faster with time when the

magnetic � eld acts away from the normal to the initial
director. Our linear analysis allows us to obtain analytical*Author for correspondence; e-mail: jp@mail.fct.unl.pt
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128 J. P. Casquilho and J. L. Figueirinhas

expressions for the time dependent wave vector of the The solution of the uniform reorientation equation (A1)
periodic pattern and of the amplitude critical time. u(t) 5 a Õ tan Õ 1[tan a exp (Õ t/t0 )] (3)

can be written for t% t02. Theory
2.1. L inear stability analysis of the magnetic

u(t) $
1

2
sin 2a

t

t0
. (4)reorientation

Consider a bulk nematic aligned monodomain. The
The result (4) shows that u (t) 5 0 is a solution ofmagnetic � eld H is applied at an angle a with respect to
equation (A1) at t 5 0 (as taken in the zero order theorythe initial homogeneous director n0 . We study the stability
in u (t) [23]) and that t% t0 [ u% 1 which allows theof the uniform reorientation in respect to a (spatially)
variational equations to be linearized in u (t) (in the � rstperiodic reorientation where the director remains in the
order theory in u (t) presented here). As discussed in [23],sample plane such that the distortion angle h depends
linear theories in u (t) are only valid for p/4 < a < p/2both on the height y and the position z along the axis
and should be a good approximation for angles a notde� ned by the initially unperturbed director. This corre-
too far from p/2. Neglecting the inertial term in thesponds to a twist–bend deformation of the director
velocity equation, the variational equations readand to a pattern of periodic stripes normal to n0 . The

possibility of a dependence on x (splay–bend deformation)
0 5 Õ (gaq2

y
1 gcq2

z
)v0 Õ a2q

z
dh0
dt

(5)is studied in § 2.2. Finally, an out of plane component
of the director is expected only at later stages of the
reorientation process [8, 13].

c1
dh0
dt

5 Õ a2q
z
v0 Õ ah0 (6)To study the dynamics of the director � eld in the case

of a twist–bend deformation, the following magnetic,
wherevelocity and director � elds are considered:

a 5 K2q2
y
1 K3q2

z
1 C (7)

with the magnetic torque C given by

H
x

5 H sin a, H
y
5 0, H

z
5 H cos a

v
x
(y, z t), v

y
5 v

z
5 0

n
x

5 sin h(y, z, t), n
y
5 0, n

z
5 cos h(y, z, t).

(1 )

C 5 xaH2 cos 2a 1 [(xa H2 sin 2a)2 /c1]t. (8)

The equations (5, 6 ) are formally analogous to the
We now follow the method described in [23]: we

zero order theory equations, but now in the magnetic
write the Ericksen–Leslie equations [24] for the � elds

torque (8) a time-dependent extra term appears. The
(1) and take the following functions for the velocity and

material parameters are the Leslie viscosity coe� cients
the director � elds:

a
i
, i 5 2, … , 5, the rotational viscosity c1 5 a3 Õ a2 , the

Miesowicz viscosities ga 5 a4 /2 and gc 5 (a4 1 a5 Õ a2 )/2,v
x
(y, z, t) 5 0 1 v0 (t) cos (q

y
y) sin (q

z
z)

h(y, z, t) 5 u(t) 1 h0 (t) cos (q
y
y) cos (q

z
z).

(2 ) and the twist and bend Frank elastic constants K2 and
K3 , respectively [24].

The substitution of equation (5) in (6) yields anIn the rhs of equations (2) the � rst terms correspond to
equation for the amplitude of each mode. Its solutionthe uniform reorientation and the second terms to the
can be writtenperturbations of the velocity and the director � elds

respectively, where q
y

and q
z

are the y and z components
of the wave vector of the distortion, with q

y
5 p/d where

d is the sample thickness in the OY direction. This h0 (r2
q
, t ¾ ) 5 A exp G Õ

c1
ceffCA1 1

K3
K2

r2
q
1 h2 cos 2aB t ¾

1
1

2
(h2 sin 2a)2 (t ¾ )2 DHanalysis is consistent with the planar boundary con-

ditions at y 5 Ô d/2 used in the study of the twist
Fréedericksz geometry [5, 7].

(9)Following standard stability analysis, we obtain the
variationa l equations up to � rst order in the perturbations . where A is the initial amplitude, r

q
5 q

z
/q

y
is the reduced

The terms that cancel out in the variational equations wave vector of the periodic mode, h 5 H/Hc is the
correspond to the uniform reorientation equation [23] reduced � eld where Hc 5 (K2p2 /xad2 )1/2 is the critical
(see the Appendix). Next, we obtain the linearized � eld for the aperiodic twist Fréedericksz transition [24],
equations for the perturbations around the unperturbed t ¾ is a reduced time given by
state u (t). Here, the variational equations are taken
around the uniform reorientation state at u (t% t0 ), t ¾ 5

t
c1 /xaH2

c
(10)

where t0 5 c1 /xaH2 is the uniform reorientation time.
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129T ransient pattern evolution

and ceff is an eŒective ( linear) viscosity given by

ceff 5 c1 Õ
r2
q
a2

2
r2

q
gc 1 ga

. (11)

The amplitude of the periodic modes given by
equation (9) is damped for t ¾ > t ¾c , where t ¾c is a critical
(reduced) time determined by computing the maximum
of the amplitude in t ¾ :

t ¾c 5 Õ
1

h2 A1 1
K3
K2

r2
q
1 h2 cos 2aB cosec2 2a. (12)

The plot of t ¾c as a function of a for a given value of
h, r2

q
> 0 and material parameters listed in the table,

Figure 1. Plot of the critical reduced time t ¾c given byshows that for a < p/2 the amplitude of the periodic
equation (12) as a function of a with h2 5 5 and r2

q 5distortion should fade away faster the more a is set away
r2
q (t¾ 5 0) given by equation (13) for the two material para-from p/2 (see � gure 1). This is in agreement with experi-

meters sets listed in the table, for (1) the low molecular mass
mental observations [25]. The divergence of the critical liquid crystal 5CB and (2) the polymer liquid crystal PBG.
time for a 5 p/2 as observed in � gure 1 is of course non- The critical angle below which the periodic pattern may not

appear is given by cos 2ac 5 Õ 1/h2 (1 1 gac1K3 /a2
2K2 ) [23],physical: it is a consequence of the two-dimensional

which gives for PBG, ac 5 52.2 ß and for 5CB, ac 5 55.6 ß .director � eld used in this theory, which leads at a 5 p/2
The inset is a magni� cation of the main � gure.to a (metastable) pattern of frozen splay–bend inversion

walls when t � 2 [8].
Maximizing the growth rate of equation (9) in respect

wave vector of the periodic pattern starts at t 5 0 fromto r2
q
, one obtains the (squared) reduced wave vector

the zero order theory value [23], and the slope of thecorresponding to the fastest growing mode at each
curve increases with the reduced magnetic � eld h andinstant
the angle a (see � gure 2).

2.2. On the possibility of oblique stripesr2
q

5

Õ gagcc1K3 1 [a2
2gagcK3{gac1K3 Õ gcgbend K2

3 [1 1 h2 cos 2a 1 (h2 sin 2a)2 t ¾ /2]}]1/2

g2
c gbendK3 To study the possibility of the formation of oblique

stripes in the plane of the sample we will simplify our(13)
problem and consider d � 2 , i.e. an in� nite sample in

where gbend 5 c1 Õ a2
2 /gc is the eŒective viscosity associated

the y direction. Thus we start with the following general
with a pure bend mode [24]. This shows that for a <p/2
the modes selected at each instant have smaller wave
vectors as the magnetic reorientation proceeds. The

Table. Material parameters used in the numerical simulation.

Materiala

Parameter 5CB [26] PBG [7]

a1 /g cmÕ 1 s Õ 1 Õ 0.066 Õ 36.7
a2 Õ 0.77 Õ 69.2
a3 Õ 0.042 0.20
a4 0.634 3.48
a5 0.624 66.1

Figure 2. The reduced wavevector r2
q

given by equation (13)K1 /10 Õ 7 dyn 5.95 12.1
K2 3.77 0.78 is expanded as a Taylor series in the reduced time t ¾ and

the result is divided by the zero order term r2
q
(t ¾ 5 0).K3 7.86 7.63

This allows a direct comparison of its values for 5CB and
PBG given in the table: a 5 90 ß (1), 85 ß (2), 80 ß (3), witha 5CB 5 4-n-pentyl-4 ¾ -cyanobiphenyl; PBG 5 poly(benzyl

glutamate). h2 5 5. Lines PBG, dots 5CB.
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130 J. P. Casquilho and J. L. Figueirinhas

director and velocity � elds

vx (x, z, t), vy 5 0, v
z
(x, z, t)

n
x

5 sin h(x, z, t), n
y
5 0, n

z
5 cos h(x, z, t)

(14)

corresponding to a reorientation of the director with a
splay–bend deformation, and take the following per-
turbations of the uniform reorientation for the velocity
and director � elds:

j
vx

(x, z, t) 5 v0 (t)q
z

cos (q
x
x 1 q

z
z)

j
vz

(x, z, t) 5 Õ v0 (t)q
x

cos (q
x
x 1 q

z
z)

j
h
(x, z, t) 5 h0 (t) sin (q

x
x 1 q

z
z).

(15)

Figure 3. Ratio q
x
/q

z
as a function of the angle a for the

parameters listed in the table: (1) 5CB, (2) PBG.This description of the velocity obeys the incompressibility
condition.

We now follow the general procedure described in
3. Conclusions

[23] and obtain the following variational equations
Our linear theory gives a physically correct qualitative

around u (t 5 0) in canonical form, where the inertial
picture of the magnetic reorientation mechanism: the

term must be kept in the velocity equation because we
more a is set away from p/2 or the more the director

are dealing with an in� nite sample [23].
reorientation proceeds, the smaller the magnetic energy
of the system; from which there results shorter living

r(q2
x
1 q2

z
)
dv0
dt

5 Õ Ac Õ
b2

c1
B v0 1 Ad 1

ab
c1
B h0 (16) modes or modes selected in each instant that have

smaller wave vectors. For a quantitative analysis one
should take into account the non-linearities of the

c1
dh0
dt

5 Õ bv0 Õ ah0 (17) problem.
As the magnetic reorientation proceeds, the periodic

where modes selected at each instant have smaller wave vectors.
The rate of decay of the wave vector of the periodica 5 K1q2

x
1 K3q2

z
1 xaH2 cos 2a (18)

pattern increases the more a is set away from p/2. This
b 5 a3q2

x
Õ a2q2

z
(19) decay is not predicted for a 5 p/2, which is consistent

with the fact that two-dimensional reorientation modelsc 5 Nq2
x
q2
z
1 gbq4

x
1 gcq4

z
, N 5 a1 1 gb 1 gc (20)

like the one used in this work lead at t � 2 to frozen
periodic inversion wall patterns. These are unstable to

d 5
c2
c1

q
x
q
z
xaH2 sin 2a, c2 5 a3 1 a2 (21)

out of plane perturbations [8, 13], from which there
results an evolution of the � nal homogeneous aligned

where in the term d in equation (21) we used (du/dt)
t=0 state through a defect production mediated, roll pattern

given by equation (A7) with f ( y) 5 1. destruction [27]. The evolution towards equilibrium for
Proceeding as described in the Appendix of [23], we a < p/2 should involve a diŒerent mechanism, as pre-

calculate the eigenvalues l
Ô

of the stability matrix of dicted by our results: the amplitude of the periodic
the system, equations (16, 17). Numerical calculations perturbation diminishes after a critical time and vanishes
with the material parameters listed in the table show eventually, giving way to a � nal uniform reorientation
that l

Õ
corresponds to a mode that decays with time regime. The more the magnetic � eld acts away from the

for all values of the control parameters h and a. We now normal to the initial director, the shorter the lifespan of
seek the selected wave vector maximizing the growth the periodic pattern.
rate given by the eigenvalue l

+
in respect to q

x
and q

z
.

The results of numerical calculations for q
x

and q
z

with
the values of the table show that q

x
, q

z
3 H2 and con- Appendix

sequently the ratio q
x
/q

z
is � eld independent. From these On the eVect of the boundary conditions on the

results, as a departs from p/2 we get q
x
/q

z
% 1 for PBG non-periodic director reorientation

and q
x
/q

z
< 1 for 5CB (see � gure 3). This suggests that The uniform reorientation equation is [23]:

the approximation of neglecting the x dependence should
be much better for the polymeric LC than for the low c1

du(t)
dt

1
1
2

xaH2 sin 2[u(t) Õ a] 5 0. (A1)
molecular mass LC of the table.
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131T ransient pattern evolution

In the description given in equation (2) the boundary excellent for t ¾ % 1 in both the cases a < ac and a > ac ;
the latter case corresponds to the formation of theconditions are taken into account for the periodic per-

turbations of the velocity and director � elds. If the eŒects periodic structure. In the limit t � 0 one obtains from
equations (A4–6)of the plates at y 5 Ô d/2 are to be studied also for the

non-periodic reorientation, for the case studied here one
obtains the following equation of motion dh(0, y)

dt
5

1

2
sin 2a

xaH2

c1
f (y); f (y) 5 G0 y 5 Ô d/2

1 y Þ Ô d/2
c1 q

t
h 1

1
2

xaH2 sin 2 (h Õ a) Õ K2 q2
yy

h 5 0. (A2)
(A7)

We now show that the uniform solution u (t) used in agreement with the derivative of equation (4).
in the linear theories presented here and in [23] is a
good approximation for early times to the solution of

This research was supported in part by the European
equation (A2). We � rst linearize equation (A2); with the

Union under research contract FMRX-CT97-0121 and
boundary conditions

by PRAXIS XXI Program (Portugal) under contract
No. 3/3.1/MMA/1769/95.h(0, y) 5 0

h(t, Ô d/2) 5 0
(A3)
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